Large, deep layer pyramid-pyramid single axon EPSPs in slices of rat motor cortex display paired pulse and frequency-dependent depression, mediated presynaptically and self-facilitation, mediated postsynaptically.

Thomson, A.M., Deuchars, J. and West, D.C. (1993) Large, deep layer pyramid-pyramid single axon EPSPs in slices of rat motor cortex display paired pulse and frequency-dependent depression, mediated presynaptically and self-facilitation, mediated postsynaptically. Journal of Neurophysiology, 70 (6). pp. 2354-2369.

Full text not available from this repository.

Abstract

1. In slices of rat sensorimotor cortex, dual intracellular recordings were obtained from 1,952 pairs of deep layer pyramidal neurons. Where action potentials in one neurone elicited excitatory postsynaptic potentials (EPSPs, n = 56) in the other, responses to different presynaptic firing rates and patterns and at different postsynaptic membrane potentials were recorded and on some occasions both neurons were filled with biocytin. 2. Slices were fixed, sectioned again at 60 microns, and incubated with Avidin horseradish peroxidase (HRP), which was then visualized using the 3,3'-diaminobenzidine tetrahydrochloride (DAB) method. All neurones reported here that were identified histologically were pyramidal cells with their somata in the deep layers (V and VI). 3. One in 70 of the tests performed revealed a synaptic connection, 25 of which were studied in detail. Mean EPSP amplitude was 1.67 +/- 1.66 (SD) mV, with some single sweep events as large as 9 mV. For some of the smaller EPSPs the amplitude distributions contained a clear peak around 0 mV, the coefficient of variation (CV) was large, and paired pulse facilitation was apparent. EPSPs with large average amplitudes displayed no apparent failures of transmission, EPSP amplitudes were fairly evenly distributed around the mean, CVs were small, and paired pulse depression was apparent in 2.5 mM extracellular Ca2+. When single sweeps were selected according to the size of the first EPSP, large second EPSPs were found to follow small first EPSPs and small second EPSPs to follow large first EPSPs. Paired pulse effects appeared, in the majority of tests, to be due to a change in presynaptic release probability. 4. Two EPSPs were recorded in three different extracellular Ca2+ concentrations. In 1 mM Ca2+, the first EPSP of a short interval pair was small and paired pulse facilitation was apparent. In 5 mM Ca2+, first EPSPs were between 2.5 and 4 times larger than in 1 mM Ca2+ and paired pulse depression was apparent. In all Ca2+ concentrations however, averaged third and fourth EPSPs of brief bursts were of similar amplitudes and smaller than second EPSPs. If presynaptic inhibition does contribute to paired pulse effects here, it is not overcome by a combination of raised extracellular Ca2+ and repetitive presynaptic firing. 5. These EPSPs displayed a wide range of time courses. The mean 10-90% rise time was 2.49 +/- 1.08 ms, the mean width at half amplitude was 15.39 +/- 5.42 ms (n = 22), and the mean EPSP latency was 1.59 +/- 0.68 ms (n = 18). (ABSTRACT TRUNCATED AT 400 WORDS)

Item Type:Article
Departments, units and centres:Department of Pharmacology > Department of Pharmacology
ID Code:2658
Journal or Publication Title:Journal of Neurophysiology
Deposited By:Library Staff
Deposited On:13 Jan 2012 15:51
Last Modified:13 Jan 2012 15:51

Repository Staff Only: Item control page

School of Pharmacy Staff Only: Edit a copy to replace this item