Pyrrolo[1,4]benzodiazepine antitumor antibiotics: relationship of DNA alkylation and sequence specificity to the biological activity of natural and synthetic compounds.

Hurley, L.H., Reck, T., Thurston, D.E., Langley, D.R., Holden, K.G., Hertzberg, R.P., Hoover, J.R., Gallagher, G., Faucette, L.F. and Mong, S.M. (1988) Pyrrolo[1,4]benzodiazepine antitumor antibiotics: relationship of DNA alkylation and sequence specificity to the biological activity of natural and synthetic compounds. Chemical Research in Toxicology, 1 (5). pp. 258-268. 10.1021/tx00005a002.

Full text not available from this repository.

DOI: 10.1021/tx00005a002

Abstract

The DNA alkylation and sequence specificity of a group of natural and synthetic pyrrolo-[1,4]benzodiazepines [P(1,4)Bs] were evaluated by using an exonuclease III stop assay, and the results were compared with in vitro and in vivo biological potency and antitumor activity. The P(1,4)B antibiotics are potent antitumor agents produced by various Actinomycetes, which are believed to mediate their cytotoxic effects by covalent bonding through N-2 of guanine in the minor groove of DNA. In this article we describe the results of a sensitive DNA alkylation assay using exonuclease III which permits both estimation of the extent of DNA modification as well as location of the precise guanines to which the drugs are covalently bound. Using this assay, we have evaluated a series of natural and synthetic compounds of the P(1,4)B class for their ability to bind to DNA and also determined their DNA sequence preference. The compounds included in this study are P(1,4)Bs carrying different substituents in the aromatic ring, having varying degrees of saturation in the five-membered ring, or differing in the stereochemistry at C-11a. These same compounds were evaluated for in vitro cytotoxic activity against B16 melanoma cells, for potency in vivo in B6D2F1 mice (LD50), and for antitumor activity (ILSmax) against P388 leukemia cells. A good correlation was found between extent of DNA alkylation and in vitro and in vivo potency. Furthermore, on the basis of electronic and steric considerations, it was possible to rationalize why those compounds that showed negligible biological activity were unable to bond covalently to DNA. Last, we have determined that the degree of saturation in the five-membered ring of the P(1,4)Bs has a significant effect on the DNA bonding reactivity and biological activity of this class of compounds.

Item Type:Article
Departments, units and centres:Department of Pharmaceutical and Biological Chemistry > Department of Pharmaceutical and Biological Chemistry
ID Code:2943
Journal or Publication Title:Chemical Research in Toxicology
Deposited By:Library Staff
Deposited On:09 Mar 2012 14:41
Last Modified:09 Mar 2012 14:41

Repository Staff Only: Item control page

School of Pharmacy Staff Only: Edit a copy to replace this item